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Abstract. Evaluation studies of computer systems deal often with the analysis of random phe-
nomena that arise when contentions on system resources imply an overall behavior which is not
predictable in a deterministic fashion. In these cases, in general, the statistical regularities that
are nevertheless present allow the construction of a probabilistic model of the observed system.
In this paper we address a performance comparison between two stable approaches for computing
some steady state measures for Markov chains. These algorithms reveal particularly suitable when
the infinitesimal generator of the Markov chain is ill-conditioned. Our analysis is carried out by
means of a few numerical case studies, dealing with different structures and different dimensions
of the infinitesimal generators themselves.
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1 Introduction

Evaluation studies of computer systems deal often with the analysis of random phenomena that arise
when contentions on system resources imply an overall behavior which is not predictable in a deter-
ministic fashion. Conflicts among transactions in a data base environment and collisions between the
transmissions issued by different systems sharing a single communication channel are only a few exam-
ples of this situation. In these cases, in general, the statistical regularities that are nevertheless present
allow the construction of a probabilistic model of the observed system.

When a system is modeled by an irreducible continuous time Markov chain (CTMC), there is often an
interest in computing a steady state measure which can be expressed as a linear function of the steady
state probability distribution. For example, we may be interested in the steady-state loss probability of
a M/PH/1/K queue, or in the asymptotic expectation of the random reward function in a fault tolerant
architecture.

In such a situation, the standard approach is to obtain the steady state probability distribution through
the resolution of a linear system of equations and then to compute the steady state measure of interest.
There exists algorithms that address the resolution of the linear system of equations from a general
viewpoint. On the other hand, there exists algorithms that use the information that we are looking for
the steady state behavior of a Markov chain.

Two major aspects characterize such type of algorithms: the size of the state space and the possible ill-
conditioning of the matrix that describes the underlying stochastic process. The former determines the
complexity in time of the resolution methods and is responsible of the memory requirements to attain
the desired results. A number of different algorithms, either direct or iterative, have been proposed in the
literature to avoid such problems (see, for example, [5]). The latter aspect is connected to the numerical
stability achieved by the algorithm. With respect to the same CTMC, some algorithms behave better



than others. For example, the GTH algorithm [1] has become very popular in the last decade. Indeed,
this algorithm works only on non-negative real values and does not use any subtractions at all.

This paper is organized as follows. Two state—of-the—art methods to derive the probability vectors of
Markov chains are presented in Section 2. In particular, the basic ideas underlying the Sheskin’s algo-
rithm (see Section 2.1) and the GTH approach (see Section 2.2) are described and it is shown that these
methods are equivalent. Section 3 presents a new iterative technique, precisely, the Steady State Detec-
tion (SSD) algorithm, to compute some steady state measures for Markov chains. A comparative study
between the performance attained by the new iterative algorithm with respect to the GTH/Sheskin’s
approach 1s outlined in Section 4. Such an analysis is carried out by means of a few numerical case
studies, dealing with different types of Markov chains. Finally, a few conclusions are drawn in Section 5.

2 Stable Algorithms for Steady State Computation

The basic characteristics of two methods that have been widely used to compute the steady state
distributions of Markov chains are pointed out in the following sections. In particular, after a brief
presentation of the underlying algorithms, we will show that these methods are equivalent.

2.1 The Sheskin’s Algorithm

The Sheskin’s algorithm [4] is a method to compute the steady state distribution by means of iterate
partitions of the state space S = {1,...,N}.

Let P = [pi;], {,j € S, be the transition probability matrix of an irreducible Markov chain over the
state space S. We denote by w the steady state distribution vector of the Markov chain so that 7 verifies
7 = 7P. As a first step, the state space is partitioned as S = {1,..., N — 1} U{N} and the matrix P is
accordingly decomposed over this partition as

T™\w
r=(wte)
where T is a matrix of dimension (N — 1) x (N — 1), W is a column vector of dimension (N — 1), R is
a row vector of dimension (N — 1) and @ is the scalar p, 5.

The matrix P’ of dimension (N — 1) defined by
P =T4+W(1-Q) 'R

is an irreducible stochastic matrix and we denote by 7’ its steady state distribution, that is 7’ verifies
7' = «' P'. If we write 7 = (2, mn), where z is a row vector of dimension (N — 1), then

oy = aeW + anyQ

that is
v =a2W(1-Q) L

which involves that x verifies the relationship # = xP’. Therefore, the vectors 7’ and z are proportional.
We denote by ¢ the coefficient of proportionality between z and 7’ so that z = ex’. As aresult, c = 1—7y
and thus

WA -Q)!
S+ AWl -Q) !

and z = (1 —wy)7’.

TN



It follows that m can be computed if 7’ is known. Note that, once the matrix P’ has been computed,
the vector R is no longer needed.

By applying (N — 2) times the same partitioning approach, starting from matrix P’, we can compute
the whole steady state distribution vector of the original Markov chain. The overall algorithm (for more
details see [4]) can be sketched out as follows.

for n = N to 2 do

H=1 — Pnpn

Pin :Pi,n/H, 1<i<n

Pij = Pij T PinPnj, L <45 <n
endfor

c=1,r =1

for j =1to N do

j-1
Ty = E :rkpk,j
k=1
c=0+r;

endfor

for j =1to N do
T =rfo
endfor

Table 1. The Sheskin’s algorithm.
Note that, in order to avoid subtractions, the value of H can be computed as H = Z?;ll Pn ;- Note also
that at the end of the loop over n, we must have p; ; = 1.

2.2 The GTH Algorithm

The GTH algorithm has been proposed in [1]. It is based on the same partitioning method proposed by
Sheskin but it applies to continuous time Markov chains. We will show here that the two algorithms are
equivalent.
Consider the infinitesimal generator A = [a;;], ¢,j € S, of an irreducible CTMC over the state
space S and define the stochastic matrix P = I 4+ A/v, where I denotes the identity matrix and
v > maXjes{—ai;}.
The matrix P is the uniformized transition probability matrix associated to the continuous time
CTMC [3]. As a result

TA=0<=r1=7P.

As in Sheskin’s algorithm, we decompose matrix A over the partition S = {1,..., N — 1} U{N} of the

state space as
B|C
A= (ﬂf) ~



Then we define the matrix A’ of dimension (N — 1) to be
A'=B-CE™'D.

It is easy to verify that the matrix P’ of the previous section is such that P’ = I + A’/v and that
7' A" = 0. We also have W(1 — Q)™ = —CE~L.

This shows that the two algorithms are equivalent. To obtain the GTH algorithm from the Sheskin’s
one, it is sufficient to replace each p;; with «;; and to set H = —a, ,. Note that in order to avoid
subtractions, it is possible to compute first the values of a; ; for j # ¢ and then to set a; ; = — Z]’;ﬂ as ;-
Note that at the end of the loop over n, we must have a1 ; = 0, as similarly we got p; 1 = 1 before.
Since this equivalence holds, and the two algorithms have been published in the same year, in the
following we will refer to them as to a unique method, called SGTH.

The time complexity of this method is given by O(%N?’). This order of magnitude has to be compared
to the one characterizing the SSD approach, presented in the next section, in order to interpret the
results obtained in our comparative study.

3 The Steady State Detection Algorithm

Consider an irreducible CTMC over the state space S = {1,..., N} with infinitesimal generator
A = la;;], i,j € S. Consider again the stochastic matrix P = I + A/v, where I denotes the iden-
tity matrix and v is chosen such that v > max;es{—a;;}. The matrix P is irreducible and by choosing
v such that p;; > 0 for some ¢, it becomes ergodic, that is, lim, . p;’; = m; for any value of i. Thus,
in what follows, we suppose that the matrix P is ergodic.

The steady state distribution 7 of the CTMC verifies 1A = 0 or, equivalently, 7P = 7.

Let f = w3 be a general steady state measure, where 3 is a column vector with non negative entries.
For n > 0, consider the sequence of column vectors V,, defined by

Vi, = P"B.
As a consequence of the ergodicity of the matrix P, we have
f= lim V,(9), Vies.
n— 00
For n > 0, we define the two sequences of real numbers m, and M, as
my, = min 'V, (¢) and M,, = max V().
ies i€s

Theorem 3.1 The sequences my, and M, are respectively non decreasing and non increasing. They
both converge to f and, for every n > 0, we have

RS
Proof. See appendix A.
Since both sequences m,, and M, converge to f, we define, given a fixed error tolerance ¢, the integer
N, as
Ny =inf{n > 0| (M, —m,)/2 < e}.

Note that N can be interpreted as the discrete time to stationarity with respect to the steady state
measure f.



Theorem 3.1 shows that, in order to compute f within an error tolerance equal to ¢, we only need to
compute the sequence of vectors V,, for n < Nj.
For a given value of ¢, this algorithm can be summarized as follows.

n=0, Vy=23, my = minges G;, My = max;es 5;

while (M,, —m,)/2 > ¢ do
n=n+1
Vo, =PV,_1
my, = mingeg Vi (%)
M, = max;es Vi (%)

endwhile
M, +m, .
9=—5 (with [f —g]| <e)

Table 2. The SSD algorithm.

Assuming that the matrix P is full, the time complexity of our method is O(N;N?), where N is the
cardinality of the state space. This complexity, compared to the one which characterizes the previous
method, shows that, from a performance viewpoint, our approach may reveal successful if N; < %N.

4 Comparative study

In order to compare the approaches described in Sections 2.1 and 2.2 above, we have implemented and
executed the SSD and the SGTH algorithms on a SUN SPARCstation system. In particular, we have
compared the times taken by these methods to solve different Markov chains varying the dimension of
the corresponding infinitesimal generator from 64x64 up to 1024x1024. The error tolerance for the SSD
algorithm has been fixed to ¢ = 1075,

In our first comparative study, the infinitesimal generator has been chosen to be a full matrix, that is,
no zero elements are present. The measured execution times, together with the number of iterations
requires by the SSD algorithm to attain the selected error tolerance in the computation of wy, are
reported in Table 3.

SSD SGTH
| N |N.|Time [sec]|Time [sec]
1024 5 357.09 1276.40
512| 2 83.86 197.98
256| 2 21.62 35.58
128 6 5.34 6.79
64| 9 1.37 1.53

Table 3. Comparison between SSD and SGTH algorithms in the case of full matrices.

In such a case, we observe that the SSD algorithm outperforms the SGTH one over the whole range of
dimensions of the infinitesimal generator. Furthermore, the bigger the infinitesimal generator, the bigger



the gain in the execution time if the SSD algorithm is used. Indeed, we have a 10.45% improvement
with 64 states, a 39.23% gain with 256 states, and a 72.02% improvement when matrices of order 1024
are solved.

In the second the infinitesimal generator used to compare the two approaches is derived from a
M/PH/1/K process with a two—phases service distribution, that is a block birth—death process. The
measure of interest is, in this case, the steady state loss probability.

The number of strictly—positive elements in such an infinitesimal generator is approximatively equal to
3N, where N = 2K + 1 is the order of the infinitesimal generator itself. The measured execution times
for the solution of such a system by means of the two approaches are reported in Table 4.

SSD SGTH2 SGTH

Time [sec]|Time [sec]|Time [sec]

[N [K[N.
1025[512[6442]  183.68]  87.28] 1028.99
513[256[3776]  49.07]  22.48] 142.39

257(128(2320 13.93 5.83 21.15
129| 64(1484 4.14 1.54 5.84
65 32| 918 1.24 0.46 1.31

Table 4. Comparison between SSD and SGTH algorithms in the case of a block birth—-death process.

As it can be seen, the situation reverts if compared to the first case study if we consider the SGTH?2
algorithm, which performs better than the SSD counterpart. As a matter of fact, we have slightly
modified the basic SGTH algorithm, as previously used, to add knowledge of the fact that the considered
infinitesimal generators contain a great number of zero elements outside the diagonal blocks. Indeed, it
is obvious that when we apply the relationship
Q5 "= Qg5 + Qin7— 1<i,j<n
|ann|
to add the contributions of elements a;, and a,; to a;;, such an operation is meaningful if and only if
both a;, and a,; are not null. As a result, entire rows and columns can be left unchanged if one of the
above conditions does not hold, thus avoiding a great number of arithmetic operations to be performed.
On the other hand, the advantage that the SSD algorithm can take out of the structure of the matrix is
the possibility of using a compact storage scheme. Indeed, this algorithm does not suffer from the odd
side fill-in problem. It seems, however, that such a gain is not sufficient to outperform the SGTH2 ap-
proach, due to the high number of iterations required by the SSD algorithm to attain an error tolerance
equal to €. However, if we do use the standard SGTH algorithm, and compare its execution times to
those of the SSD approach, is the latter which once more performs better (see Table 4).

In order to further compare the SSD and SGTH approaches, we have considered a third case study,
where sparse, randomly—built matrices have been used. To obtain meaningful comparisons with respect
to the previous case, such matrices have been derived to approximately contain the same number of non
zero elements of those generated by the M/PH/1/K processes. Results for this study, where the value
of mn has been computed, are summarized in Table 5.

As in the previous study we have used the SGTH2 algorithm to take advantage of the sparse structure of
the matrix. Note that two different behaviors can be identified: the SGTH2 algorithm clearly performs



SSD SGTH2
N [N, |Time [sec]|Time [sec]
1024|156 91.24 170.55
512(230 24.21 35.31
256(209 6.63 7.24
128119 1.74 1.73
64(181 0.57 0.48

Table 5. Comparison between SSD and SGTH algorithms in the case of sparse matrices.

better for infinitesimal generators of dimensions 64 (18.75%) while the difference in times is negligible
for a 128x 128 matrix. On the other hand, the SSD algorithm reveals faster on all the remaining cases
(the gain reaches a peak of more than 46.50% with 1024 states).

In this last example, the infinitesimal generator contains a great number of zero elements but they are
no longer displaced according to a highly—regular structure. In such a case, we are not guaranteed that
we can save a great bunch of arithmetical operations with the SGTH2 algorithm.

5 Conclusions

In this paper we have addressed a performance comparison between two stable approaches for computing
some steady state measures for Markov chains. In particular, the different performance obtained by the
SSD algorithm and by the SGTH method have been analyzed by means of a few numerical case studies.
They cover a complete range of problems, dealing with full and block infinitesimal generators, as well
as sparse, randomly-built stochastic matrices. The case studies have been carried out by comparing the
times required by these approaches to solve Markov chains with a number of states ranging from 64 to
1024.

As a result, we can point out that, if the basic implementation of the SGTH algorithm 1s used, the SSD
approach always reveals faster. In the case of infinitesimal generators characterized by a highly-regular
structure, the a priori knowledge of such a structure can be fully exploited within the SGTH algorithm
to attain better performance.
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A  Proof of Theorem 3.1

The following demonstration is based on ideas taken from [2].
For every ¢ € S, we have V,,11(d) = Zjespi,jvn(j)~ It follows that m, < V,41(i) < M,, and we get

My < mpy1 and My < M,. (1)

It follows that the sequences m,, and M,, are respectively non decreasing and non increasing. We denote
by m and M their respective limits when n — oco.

Writing now f = 'V, = van(i), we get m, < f < M, and, as a result,
€S

lwn + my, lwn — My
|f - | < :
2 2

Let us define dy, = M,, — m,,. From equation (1), it follows that

0 S dn+1 S dn
To prove that m = f = M, it is sufficient to prove that
lim d, =0. (2)

n—-00

Consider the subsequence d,,, for a fixed integer L > 0. In order to prove equation (2), we have to show
that
lim d,; =0. (3)

n——-00
Since P is the transition probability matrix of an ergodic Markov chain, there exists an integer L such
that
pE; >0, ij€ES.

Let us define ¢ = mi%pfj. Since pZ»L]» > 0, we have 0 < ¢ < 1/2.
ijesth ;

Now, since V,, 41 = PV,,, we have
Vingyr = PHVar. (4)
Let r € S and ¢ € S be such that

M(n+1)L = ‘/(n+1)L(r) and Mmpr = Vn (Q)
Then, from equation (4), we have
M(n+1)L = ZP& VnL(])
jeSs
= pyyVar(a) + Zpﬁj Var(j)
Jj#r
= pyl':qan + Zpyl':] VnL(])
Jj#r
S pyl':qan + MnL Zpyl':]
Jj#r

= pyl':qan + MnL(l - pyl':q)
— nL — (MnL - an)Pﬁq
S MnL - (MnL - an)c



We have shown that
M(n+1)L S MnL - (MnL - an)c

Let now r € S and ¢ € S be such that

Mn4+1)L = ‘/(n+1)L(r) and M,z =V, (q)
Then, from equation (4), we have
m(n+1)L = Zpyl':] VnL(])
jeSs
=pEVar(@) + D pE; Var(h)
J#r
= Mar+ )07 Ver (§)
J#r
Z pyl':anL + mur Zpyl':]
J#r
= pyl':anL + an(l - pyl':q)
= MnL + (MnL - an)Pﬁq
Z MmnL + (MnL - an)c
We have shown that
M(n4+1)L S Mnr + (MnL - an)c

Subtracting equations (5) and (6), we get

M(n+1)L - m(n+1)L S (MnL - an)(l - QC)a

and then
d(n+1)L < dnL(l - 26)

As a result
dnL S (1 - 2c)ndNa

which tends to 0 as n tends to co.
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