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Abstract—The services and applications deployed nowadays
in cloud environments are characterized by variable intensity
and resource requirements. The variability of these workloads
coupled with their heterogeneity affects the cost associated with
the cloud infrastructure and the performance levels that can
be satisfied. In these complex scenarios, resource provisioning
policies have to take into account the actual workloads being
processed and pro-actively anticipate in a timely manner the
changes in workload intensity and characteristics. To support
this decision process, we propose an integrated approach – that
combines various workload characterization techniques – for
modeling and predicting workload access patterns. The appli-
cation of this approach has shown the importance of identifying
models that specifically capture and reproduce the dynamics of
these patterns and consider at the same time their peculiarities.

Index Terms—predictive models, workload characterization,
clustering techniques, time series analysis, cloud computing.

I. INTRODUCTION

The performance of the services and applications being

deployed nowadays on the Internet is affected by a mix of

technological, sociological and psychological factors, includ-

ing, among the others, the interactions of the users with the

services, the number and mix of the service requests being

concurrently processed as well as the characteristics of the

cloud infrastructure [1].

Since most services are on demand, their usage patterns

vary – depending on the time of the day and the day of the

week – and experience the so-called “network effect”. These

patterns are also influenced by the pervasive use of mobile

devices and by the presence of a large variety of bots and IoT

devices that automatically and continuously generate requests.

Moreover, despite the flexibility and elasticity offered by cloud

environments, the use of virtualized resources and the co-

location of heterogeneous workloads on a physical machine

might cause contentions and performance fluctuations [2], [3].

In these complex and uncertain scenarios, it is quite chal-

lenging to choose effective resource allocation plans, that is,

to provision the amount of resources of minimum cost able

to satisfy the SLA requirements and the desired performance

levels [4]. More precisely, decisions about provisioning and

management of cloud and data center resources have to take

into account the actual workloads being processed and to

pro-actively anticipate in a timely manner the changes in

workload intensity and characteristics. In fact, to better exploit

their cloud resources, service providers deploy heterogeneous

workloads with different SLA requirements (e.g., time sen-

sitive applications, data and I/O intensive analytics tasks,

computation intensive tasks). Therefore, the dynamic decision

process has to be supported by accurate models based on the

analysis of historical workload data.

Although workload has been extensively studied in the past,

in recent years it did not receive the attention it deserves

especially in the framework of predictions for interactive cloud

services. In this paper, we study the workload with the objec-

tive of modeling and forecasting the access patterns of service

requests, that is, when requests will be issued and how many

will be issued at the same time. For this purpose, we propose

an integrated approach based on a combined application of

various workload characterization and time series analysis and

forecasting techniques. As an application of this approach, we

analyze properly anonymized HTTP trace files of the official

web site of the University of Pavia. In particular, starting from

some data analytics, we investigate the main characteristics of

the requests processed by the server and their similarities. We

then identify models that capture and reproduce the dynamics

of the temporal patterns of these requests and consider at the

same time their peculiarities.

The main contributions of this work are summarized as:

• integrated approach for modeling and predicting work-

load access patterns to be used for resource provisioning

in cloud environments;

• identification of multiclass models of heterogeneous

workloads;

• application of the proposed approach to real workload

data.

The layout of the paper is as follows. Section II briefly

discusses the state of the art in the domain of workload

forecasting for cloud environments. The workload prediction



approach is described in Section III. An application of the

proposed approach is presented in Section IV. Finally, Sec-

tion V summarizes the paper and outlines some future research

directions.

II. RELATED WORK

Several papers acknowledge that satisfying the desired per-

formance levels with a cost-effective amount of resources is

very challenging because cloud workloads are quite dynamic

and might even experience sudden variations over time [5].

Hence, to cope with these challenges, accurate predictions of

workloads and of their resource demands are compelling.

Workload predictions have been addressed under different

perspectives. Some papers focus on time series analysis and

forecasting, while some others rely on machine learning tech-

niques. Roy et al. [6] estimate the incoming workload of a

system for future time periods by means of an Autoregressive

Moving Average model that takes into account the workload

patterns up to the current time period. Similarly, Calheiros et

al. [7] address the prediction of workloads characterized by a

seasonal behavior using an Autoregressive Integrated Moving

Average model. The model – based on historical workload

data – is updated on the run by applying feedback from latest

observed loads. The predicted load is then used to dynamically

provision cloud resources.

Islam et al. [8] propose an evolutionary approach for

developing models able to make predictions to be used for

adaptive resource provisioning in the cloud. In particular, by

applying machine learning algorithms (i.e., error correction

neural network and linear regression) and the sliding window

technique, they show the superior prediction of the neural

network models with an optimal window size (i.e., the Mean

Absolute Percentage Error is 0.195 compared to 0.364 for

linear regression).

Yang et al. [9] present a cost-aware auto-scaling approach

that integrates a workload predictor based on a simple linear

regression model, while in [10] the predictions rely on a

recurrent neural network model.

In the framework of data center workload forecasting,

Kumar and Singh [11] propose a prediction approach based

on three layer neural network trained using a self adaptive

differential evolution algorithm able to explore the solution

space in multiple directions. A cyclic window learning ap-

proach is applied in [12] to predict the probability distribution

parameters of the number of task arrivals to a data center

during every predetermined period, while a Seasonal ARIMA

model is proposed in [13].

Starting from the idea that workloads exhibit different

change patterns, Liu et al. [14] present an adaptive approach

for workload forecasting. According to this approach, differ-

ent models – based on linear regression and support vector

machine – are associated with different workload classes. The

Mean Relative Percentage Error of this approach (i.e., 0.4677)

is lower than errors obtained with other methods (e.g., linear

regression, ARIMA).

Similarly to this work, we subdivide the workload in classes

according to its characteristics and we study the behavior of

the arrival patterns of each class separately. In particular, we

represent the workload arrivals as a time series, whose analysis

allows us to identify models to be used for predictions. These

models are also very useful in all studies, e.g., simulation, that

require the definition of multiclass synthetic workloads.

III. WORKLOAD PREDICTION APPROACH

As already pointed out, workload models represent the

basis for implementing provisioning policies that dynamically

adapt cloud resources to workload changes. In this section

we present an integrated approach to identify models able to

accurately capture and reproduce workload dynamics and at

the same time take into account the workload peculiarities.

The proposed approach – whose workflow is summarized

in Figure 1 – includes several steps aimed at discovering the

properties of the workload data and identifying the corre-

sponding models. In particular, the preprocessing of historical

workload data (i.e., measurements collected on the infrastruc-

ture under investigation) provides some preliminary insights

into their behavior and statistical properties. More precisely,

the exploratory analysis of the parameters describing each

workload component – coupled with the detection of potential

outliers – works well for this purpose.

The exploratory analysis is based on the application of

statistical and visualization techniques. Outlier detection relies

on the computation of the percentiles of the parameter distribu-

tions. We note that outliers refer to the workload components

characterized by an “anomalous” behavior with respect to one

or multiple parameters. Therefore, once identified, outliers are

usually removed not to perturb the following analysis.

To further investigate and summarize the behavior of the

workload, the proposed approach focuses on the identification

of classes of components with similar properties. This step

is very important especially in the case of heterogeneous

workloads in that it allows the individual characteristics of

these workloads to be specifically taken into account and

represented into these classes.

In detail, cluster analysis applied to the principal com-

ponents – obtained as a result of the Principal Component

Analysis (PCA) – provides these classes. Let us remark that the

PCA application is advisable to remove potential correlations

among parameters and reduce data dimensionality.

A fundamental step of the proposed approach deals with

time series analysis aimed at formulating models of workload

dynamics and predicting their future behavior. Although the

techniques for time series analysis and forecasting are well

defined, their application is not usually straightforward and

requires particular care [15], [16].

More specifically, a preliminary visual inspection of the

temporal behavior of the time series highlights recognizable

patterns (e.g., trend, seasonality). The trend refers to slowly

varying patterns over quite long periods of time, while the

seasonality corresponds to a behavior that repeats over short

periods of time (e.g., day, week, month, year).



Fig. 1: Workflow of the proposed approach.

Therefore, to analytically detect periodic behaviors spectral

analysis is applied because it represents the data in the

frequency domain.

To better understand the properties of the time series,

exploring its behavior over time and improve forecasts, a clas-

sical decomposition based on an additive model – which in-

cludes deterministic and stochastic components – is used [17].

This type of decomposition is particularly useful because

the models of the deterministic components (i.e., trend and

seasonal) can be associated with long-term planning of cloud

resources, while the model of the stochastic component (i.e.,

the remainder of the time series) can be associated with short-

term planning (see Figure 2).

Fig. 2: Decomposition of the time series into its underlying

components.

The estimation of the deterministic components is obtained

by fitting appropriate models to the data, while techniques,

such as moving average, auto regressive, Holt-Winters, Box

and Jenkins [18], are applied to estimate the stochastic com-

ponent.

These models are the basis for making forecasts. For the

deterministic components, future values are obtained by ex-

trapolation, while approaches, such as Box and Jenkins, are

applied for predicting the stochastic component.

IV. EXPERIMENTAL RESULTS

In this section we describe the application of the proposed

approach to analyze properly anonymized HTTP trace files

collected on the web server hosting the official web site of the

University of Pavia.

A. Dataset description

The trace files – graciously provided for this study – account

for 33 GB of workload data that refer to more than 124M

requests received and processed by the web server in one year.

The traffic generated by the server for the responses of these

requests accounts for 7.5 TB (see Table I for details).

TABLE I: Characteristics of workload data collected by the

web server hosting the official web site of the University of

Pavia.

Measurement Period 16 July 2017 – 17 July 2018

Trace file size 33 GB

Number of requests 124,168,736

Unique IP addresses 1,994,015

Unique User-Agent strings 106,296

Total traffic 7.569 TB

To accurately characterize and model this workload we

introduce the concepts of user and session. In particular, a

“user” is defined by the pair consisting of the anonymized IP

address and User-Agent string – identifying the software agent

– stored in the trace files and associated with each request.

Although a pair could correspond to multiple users behind

proxy servers, we believe this is a good approximation to

distinguish users. Of course, a user accessing the web site

with different devices in general will correspond to multiple

pairs.

Moreover, we define a session as the set of requests issued

by a user and characterized by an interarrival time (i.e.,

the time between consecutive requests) within a predefined

threshold (set to five minutes in our study).

B. Data analytics

Out of the 2M unique IP addresses and slightly more than

100,000 unique User-Agent strings (see Table I), we identify

about 3.3M users – either humans or automated software

agents, such as web robots or watchdogs – and 9.8M sessions.

In particular, 35% of the sessions are “singleton” consisting

of one request only and there is another 32% of sessions with

a number of requests ranging from two to nine. All these

sessions account for only 13.5% (i.e., 16M) of the requests

processed by the server over the entire measurement period.



Moreover, only about one fourth of the 3.3M users revisit the

web site (i.e., issue more than one session).

In what follows we focus on sessions – independently of

the user – with at least ten requests each, that is, 3,181,164

sessions. In fact, these sessions – that account for most of

the requests and the majority of the users – heavily influence

server performance. Moreover, it might be difficult to rely on

“short” sessions for making predictions about resources to be

provisioned.

To obtain some preliminary insights on the properties of

the sessions we describe each session in terms of parame-

ters that quantify its load on the server, namely, number of

requests, session duration, average and standard deviation of

the request interarrival times, traffic generated per session and

per request. Table II summarizes basic statistics of some of

these parameters. We notice a significant heterogeneity among

sessions. In general, the standard deviation is at least one order

TABLE II: Main properties of the user sessions.

Parameter Average St. Dev. Min. Max.

Number of requests 34.3 474.7 10 701,077

Duration [s] 171.0 13,935.7 0 21,035,250

Avg. interarrival time [s] 4.5 13.4 0 289

Session traffic [MB] 1.9 25.6 0 13,870

magnitude larger than the corresponding average. Moreover,

some sessions (i.e., 4%) are characterized by both duration

and interarrival times equal to zero. This may be due to the

one-second temporal resolution used in the trace files coupled

with the structural properties of the web site – whose pages

consist of many embedded objects stored on the same server.

Additionally, to investigate the relationships among the

parameters describing each session, we compute their corre-

lations. As expected, the session duration is highly correlated

(i.e., 0.98) with the number of requests in a session, thus in

what follows we consider only one of these two parameters

(i.e., number of requests).

A closer look at the distributions of the parameters suggests

the presence of sessions that can be considered as outliers

with respect to number of requests and traffic per session

and per request. By trimming their distributions at the 99th

percentile, we identify and remove from the dataset 65,752

outliers (corresponding to 0.2% of the sessions).

The temporal behavior of the session arrival process is

another important aspect considered to investigate the overall

properties of the workload. Figure 3 shows the number of

sessions initiated every five minutes over two weeks. We

clearly distinguish weekdays characterized by a much larger

number of arrivals, from weekend days. Moreover, we notice a

typical diurnal pattern, with a smaller number of new sessions

over night than during the day. In particular, in the morning

hours of weekdays there are up to 390 sessions in five minutes,

while in weekend days only 188. On the contrary, night hours

are characterized by much fewer sessions (i.e., as few as 15

in five minutes) independently of the day of the week. In

addition, there are some spikes that denote sudden and brief
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Fig. 3: Number of sessions initiated every five minutes over

two weeks starting Monday, October 2, 2017.

increases in the number of new sessions. This is for example

the case of the spike occurring on Sunday Oct. 15 at 8:30pm,

when the number of sessions goes in five minutes from 83 to

188.

Figure 4 shows the behavior of the session arrival process

over the entire measurement period. The daily and weekly

patterns have been removed by computing the moving average

with a window size of one week. We notice a peak of new

sessions in September, corresponding to the beginning of the

academic year, and two periods characterized by very few

sessions, corresponding to summer and Christmas holidays,

respectively.
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Fig. 4: Behavior of the session arrival process over one year.

In summary, data analytics suggests the need to properly

take into account the variability and heterogeneity of the

session characteristics and of their arrival patterns.

C. Class identification

To identify classes of sessions with similar characteristics,

we apply clustering techniques, namely, the Lloyd’s imple-

mentation of the k-means algorithm [19], [20]. The sum of

squared distances within clusters is the metric used to assess

the optimal number of clusters.

Clustering is applied to three out of the five principal

components obtained as a result of the application of the PCA

to the parameters describing the sessions (see Sect. IV-B).
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Fig. 5: Breakdown into five classes of the session arrivals shown in Figure 3.

Note that these three principal components explain a very large

fraction of the total variance of the data, i.e., 94%.

As a result of the combined application of PCA and

clustering, we obtain an optimal partition of the sessions into

five classes. The centroids of these classes – in the space

of session parameters – are presented in Table III. As can

TABLE III: Centroids in the space of the session parameters

and composition of the five classes of sessions.

Class Number of Interarrival time Traffic Session
ID requests avg. st. dev. per request per session %

[s] [s] [MB] [MB]

1 59.5 5.5 20.0 0.036 2.14 10
2 23.9 1.8 5.6 0.022 0.54 55
3 34.1 1.4 4.9 0.065 2.08 30
4 31.7 13.8 24.3 0.304 9.12 1
5 16.7 54.2 68.6 0.060 0.99 4

be seen, these classes nicely capture the heterogeneity of the

sessions. For example, class 1 groups sessions with the largest

number of requests whose average interarrival time is equal to

5.5 seconds. On the contrary, sessions belonging to class 5

have a much smaller number of requests but their average

interarrival time is an order of magnitude larger. Moreover,

55% of the sessions are grouped in one class, i.e., class 2.

These are “light” sessions in terms of traffic per session and

per request.

Another interesting result of the analysis of class compo-

sition refers to the identification of sessions associated with

automated software agents, i.e., web robots. This analysis

reveals that the majority of web robot sessions – identified

by means of their User-Agent string – are grouped into two

classes, namely, 4 and 5. This result can be very useful to

assign different service levels to different workload classes.

D. Time Series Analysis

The classes previously identified are the basis for model-

ing and predicting the arrival process of the sessions. The

breakdown into the five classes of the patterns of Figure 3

is shown in Figure 5. As this figure suggests, even though in

general the arrival process exhibits regular weekly and diurnal

behaviors, the number of new sessions and their patterns are

quite different, thus requiring individual models.

To formulate models of the session dynamics and predict

their behavior, we study the arrival process of each class in the

domain of time series analysis. More precisely, we split the

measurement period in two sub-periods, namely, we use the

data of the first 44 weeks for identifying the models and the

data of the remaining eight weeks for validating the forecasting

accuracy of the models.

As expected, spectral analysis highlights daily and weekly

periodic patterns for all classes. On the contrary, the additive

time series decomposition – into seasonal (i.e., daily pattern),

periodic trend (i.e., weekly pattern) and irregular (i.e., the

time series remainder) components – suggests that classes are

characterized by different behaviors.

In detail, the time series decomposition clearly identifies

daily and weekly periodic patterns for deterministic compo-

nents of the first three classes, whereas for classes 4 and

5 the contribution of deterministic components is negligible.

Therefore, to avoid overfitting, we directly describe the arrival

process of these two classes by ARIMA models of (1, 1, 1)
and (0, 1, 1) orders, respectively (see Fig. 8).

To model the daily and weekly components for the first

three classes we use trigonometric polynomials. We identify

their optimal degree and parameters by applying numerical

fitting techniques coupled with goodness of fit tests, analysis

of variance and backward stepwise regression techniques.

Figures 6 and 7 show the deterministic components of the

time series and their models. The seasonal components of
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Fig. 6: Seasonal (daily) components of the time series repre-

senting the arrival process of three classes (dots) and corre-

sponding models (solid lines).
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these classes are modeled by trigonometric polynomials of de-



gree 4, 5 and 4, respectively. On the other hand, trigonometric

polynomials of degree 6, 6 and 5 best fit the trend components.

Once the models of the deterministic components have

been identified, we investigate the properties (e.g., stationarity,

autocorrelation) of the stochastic component corresponding to

the time series remainder. In particular, we use ARIMA models

in that they allow us to accurately capture and forecast time

series behaviors. Therefore, we describe the remainders of the

three classes by ARIMA models with (1, 1, 1), (0, 1, 1), and

(0, 1, 1) orders, respectively. Finally, we compute the overall

model of the session arrival process for each class as the sum

of the models previously identified for the deterministic and

stochastic components.

Figure 8 depicts the arrival process together with the corre-

sponding model and the one-step ahead forecasts for all five

classes. As can be seen, our models nicely cope with the arrival

process of the various classes. More specifically, we compute

the Mean Absolute Error (MAE) to assess the accuracy of the

models and the corresponding forecasts. As Table IV suggests,

the accuracy of the forecasts is good and the corresponding

errors are comparable with the errors introduced in the models.

TABLE IV: Accuracy of models and forecasts in terms of

MAE.

Class 1 Class 2 Class 3 Class 4 Class 5

Model 1.33 3.26 2.29 0.39 0.88

Forecast 1.33 3.49 2.38 0.31 0.79

In summary, these results show the benefits of explicitly

considering the workload heterogeneity in the models.

V. CONCLUSION

Workloads deployed in cloud environments are typically

characterized by variable intensity and resource requirements.

The variability of these workloads and their heterogeneity

affect the performance perceived by the users and makes

resource provisioning decisions rather challenging. Hence,

to cope with these complex and uncertain scenarios, these

decisions have to rely on accurate workload models.

In this paper, we presented an integrated approach for

identifying models able to capture and reproduce workload

dynamics and at the same time take account of the workload

peculiarities. The approach is based on a combined application

of various workload characterization techniques. In particular,

clustering techniques summarize the behavior of the workload

and identify classes of homogeneous components. Time series

analysis and forecasting identify models of the workload

dynamics and predict its future behavior. The application of the

proposed approach to anonymized HTTP trace files confirmed

the heterogeneity of this workload and the importance of mod-

eling the arrival process of each class separately. In addition,

in case of significant changes in the workload dynamics (e.g.,

structural breaks) it might be necessary to refit the models.

We outline that the proposed approach is general enough to

be applied for modeling and predicting the dynamics of any
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Fig. 8: Arrival process over four weeks (black), model (blue)

and one-step ahead forecasts (red) for the five classes identified

from historical workload data.

type of workload and it can be used in all studies that require

the definition of multiclass synthetic workloads.

As future research activities, we plan to investigate the

benefits of the proposed approach in proactive autoscaling

policies for cloud environments. Moreover, we will apply our

approach to measurements collected in different scenarios and

application domains (e.g., IoT, social media).
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