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Abstract: HPC programmers utilise tracefiles, which record program behaviour in great 
detail, as the basis for many performance analysis activities. The lack of generally 
accessible tracefiles has forced programmers to develop their own testbeds in order to study 
the basic performance characteristics of the platforms they use. Because tracefiles serve as 
input to performance analysis and performance prediction tools, tool developers have also 
been hindered by the lack of a testbed for verifying and fine-tuning tool functionality.  
A community repository that meets the needs of both application and tool developers has 
been created in this study. In this paper, we describe how the Tracefile Testbed was 
designed to facilitate flexible searching and retrieval of tracefiles based on a variety of 
characteristics has been described. Its web-based interface provides a convenient 
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mechanism for browsing, downloading, and uploading collections of tracefiles and tracefile 
segments, as well as viewing statistical summaries of performance characteristics. 
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1 BACKGROUND AND MOTIVATION 

A high-performance computing (HPC) application is 
characterised by many variables that control its execution 
and determine its performance. Variables, such as algorithm 
type, problem size, input parameters, programming 
languages and paradigms, libraries, hardware architecture, 
etc., can have very significant effects on program behaviour. 
It is important to understand the role played by each 
variable and the ways they combine to influence the 
performance achieved, or achievable, by the application. 

Two approaches are commonly used for the purpose of 
understanding these effects: performance profiling and 
performance prediction. Profiling (Reed et al., 1998; Shande 
et al., 1999) captures the behaviour of an application by 

monitoring its execution. Monitoring can be based on 
hardware counter sampling or it can require the 
instrumentation of the application’s source code or its 
binary executable. The data produced by monitoring may be 
analysed on–the–fly or stored as tracefiles for post-mortem 
analysis. Many of the tools currently available for HPC 
performance analysis are based on tracefiles. Selected 
examples are described below. 
• Jumpshot (Zaki et al., 1999) analyses tracefiles and 

provides multiple time-space diagrams of program 
behaviour. 

• Continuous Monitoring (Perl et al., 1998) captures logs 
of appropriately instrumented applications, while they 
are being executed with the objective of automating the 
testing of performance properties of complex systems. 
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• Paradyn (Miller et al., 1995) employs historical 
performance data, gathered in previous executions of an 
application, to improve the effectiveness of automated 
performance diagnosis. The Performance Consultant 
component, within Paradyn, extracts knowledge from 
the performance data collected over the life of an 
application (Karavanic and Miller, 1999). 

Performance prediction (Fahringer and Pozgaj, 2000) takes 
a different approach. These techniques attempt to provide 
estimates of the performance achievable by an application 
by analysing its structure and the influences of compiler 
transformations and the system architecture using symbolic 
analysis, simulation, or other model-based methods. 
Prediction tools often rely directly or indirectly on tracefiles. 
The data from tracefiles can serve as the basis for constructing 
or validating the performance model, or the data can be used 
directly by the tool to adjust the model to the characteristics 
of a particular application (e.g., Yan et al., 1995). 

Tracefiles are typically generated by the application 
programmer as part of the performance tuning process. 
These field studies of HPC programmers indicate that many  
programmers also create suites of simple pseudo-benchmark 
codes and generate tracefiles to help establish basic 
performance characteristics when they move to new HPC 
platforms. The intention in both cases is to help the user to 
understand and tune their applications better. 

The developers of trace-based tools also generate suites of 
tracefiles. In this case, the objective is to assist in the 
process of testing and fine-tuning tool functionality. 
According to the subjects interviewed here, tool developers 
do not often have access to real applications for these 
activities; rather, they construct artificial codes designed to 
generate tracefiles that will stress the tool’s boundary 
conditions or generate demonstration visualisations. 

Tracefiles are a valuable source of information about the 
properties and behaviour both of applications and of the 
systems on which they are executed. Tool users and 
developers have indicated alike in several public forums 
(e.g., Parallel Tools Consortium meetings, Birds of a 
Feather (BOF) sessions at the SC conference, community 
workshops on parallel debugging and performance tuning 
tools) that it would be useful to construct a generally 
accessible testbed for tracefile data. This would make it 
possible for users to see if tracefiles from related applications 
can be of use in the design and tuning of their own application. 
It would also provide a more realistic foundation for testing 
new performance tools. Furthermore, because tracefiles are 
typically large and unwieldy to store (the recording of key 
program events during one application run can generate 
gigabytes of data), a centralised repository could encourage 
programmers to archive their tracefiles, rather than deleting 
them when they are no longer of immediate use. 

2 THE TRACEFILE TESTBED 

With support from the Department of Defense (DOD) HPC 
Modernization Program, the creation of a community 

repository called the Tracefile Testbed was undertaken. The 
objective was to develop a database that not only supports 
convenient and flexible searching of tracefile data generated 
on HPC systems, but also to allow others to benefit from 
performance data that was collected by a programmer or 
tool developer for their own purposes. 

The Tracefile Testbed was implemented as a joint project 
of NACSE and the Università di Pavia. It was structured 
according to a data model that describes both the static and 
dynamic behaviour of parallel applications, as captured in 
tracefiles. The tracefiles are maintained as separate file 
units. The source code that generated the tracefiles is also 
available (unless that code is proprietary). Metadata 
encapsulating the performance behaviour and run-time 
environment characteristics associated with the tracefiles are 
maintained in a relational database using Oracle9i. 

File size is a key consideration when storing tracefiles. 
Although our organisation has committed itself to  
maintaining the repository as a contribution to the HPC 
community, size was also considered from the perspective 
of the users, who will find that storing many downloaded 
copies is quite resource-intensive. We accommodated this 
usability consideration in the following way. Within the 
Tracefile Testbed, all file locations are maintained in the 
metadata database as URLs. This allows users – if they 
choose – to maintain their own subsets of tracefiles by 
simply storing links or shortcuts to the files, rather than the 
files themselves. A secondary advantage of this approach is 
that it allows us to distribute the repository itself. That is, 
the actual tracefiles may be located on multiple servers that 
can be different from the server(s) hosting the tool interface 
and the metadata database. The initial implementation 
involves three servers: a web server maintaining the 
interface, a relational database server hosting the metadata, 
and the tracefiles that are stored on a separate file server. 
The general architecture of the Tracefile Testbed browser is 
illustrated in Figure 1. 

 
Figure 1   Architecture of the Tracefile Testbed 
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A web-based interface allows users to navigate through the 
repository, select tracefiles and segments from one or more 
applications, browse their characteristics, and download the 
data. Performance data can be identified and extracted, 
based on various selection criteria, such as “all data related 
to a given application”, “data related to a class of 
applications”, “data from programs executed on a particular 
system architecture”, “data from runs that performed global 
broadcast operations”, etc. The Tracefile Testbed provides 
performance summaries of selected trace data; alternatively, 
the tracefile data may be downloaded for analysis using 
available tools, in order to derive detailed performance 
figures. 

There are several significant challenges to be addressed in 
creating a repository of this nature. 
• How can we represent the characteristics of a parallel 

application and its associated tracefile(s) in such a way 
that testbed users can easily find and select appropriate 
performance data? 

• How much metadata can be gleaned from the tracefiles 
themselves, rather than being supplied by the user 
submitting the files? 

• How can tracefiles be subdivided into smaller segments 
to minimise the amount of data that must be 
downloaded for a particular purpose? What is the 
proper abstraction for those segments, given that we 
cannot guarantee that events on different processors 
occurred near-simultaneously (or even that they 
occurred at all)? 

• How can we ensure that download operations always 
yield useful data? How can we reduce the need to 
download tracefiles? Can we allow users to maintain 
shortcuts to the appropriate files, without having to 
copy the files themselves? 

• How can tracefile segments be structured, so that they 
can serve as input to trace-based tools when the user 
has not downloaded the complete file? 

• Can the repository reduce the need for programmers to 
write simple analysis routines? Is there a way to 
provide a snapshot view that compares the performance 
recorded in multiple tracefiles? 

• How can the effort required to enter metadata be 
minimised in order to encourage fully annotated 
submissions? 

• What mechanisms for searching, selecting, and 
browsing tracefile data are powerful and flexible 
enough to help programmers understand application 
behaviour? 

• Are the same mechanisms appropriate for use by tool 
developers? If not, what type of specialised support is 
required? 

• To what extent can the user interface guide the user 
through the repository, so that totally unfamiliar users 
can quickly arrive at the most useful information? 

Clearly, many of the issues are related to the usability of the 
repository, rather than structural aspects of the database 

itself. The sections below discuss how each issue was 
addressed in developing the Tracefile Testbed. 

3 DATA MODEL 

In order to categorise and maintain tracefile data, we require 
a data model with the power to describe the characteristics 
of parallel applications and the performance measurements 
collected during their execution. In large part, the 
framework chosen to describe tracefiles was derived from 
user needs in searching the tracefile collection. Based on 
previous usability studies, it was determined that users wish 
to select entire tracefiles (or segments thereof) on the basis 
of machine architecture types and parameters, information 
related to the tracefile itself, and information related to the 
tracefile segments. Users should also be able to perform 
searches based on arbitrary keywords reflecting system 
platforms, problem types, and user-defined events. 

The model must capture not just parallel machine 
characteristics, but also the design strategies and 
implementation details of the application. For this purpose, 
the information describing a parallel application has been 
grouped into three layers. The system layer provides a 
coarse-grained description of the parallel machine on which 
the application is executed. The other two layers comprise 
information derived from the application itself; the 
application layer describes its static characteristics, whereas 
the execution layer deals with the dynamic characteristics 
directly related to measurements collected at run time. Most 
of the information comprising the system and application 
layers is not available in the tracefile, but must be supplied 
by the application programmer in the form of metadata. 
Execution layer information can be harvested directly from 
the tracefiles. 

The system layer description includes machine 
architecture (e.g., shared memory, virtual shared memory, 
distributed memory, cluster of SMPs), number of 
processors, clock frequency, amount of physical memory, 
cache size, communication subsystem, I/O subsystem, 
communication and numeric libraries, and parallelisation 
tools. 

The static characteristics of the application layer range 
from the disciplinary domain (e.g., computational fluid 
dynamics, weather forecasting, simulation of physical and 
chemical phenomena) to the algorithms (e.g., partial 
differential equation solvers, spectral methods, Monte Carlo 
simulations) and programming languages employed. They 
also include information about the application program 
interface (e.g., MPI, OpenMP, PVM) and links to the source 
code. Problem size, number of allocated processors, and 
work and data distributions are further examples of static 
characteristics. 

The execution layer provides a description of the 
behaviour of a parallel application in terms of measurements 
generated at run time. These measurements are typically  
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time-stamped descriptions that correspond to specific events 
(I/O operation, cache miss, page fault, etc.) or to 
instrumentation of the source code (e.g., beginning or end of 
an arbitrary section of code, such as a subroutine or loop). 
The type and number of measurements associated with each 
event depend on the event type and on the monitoring 
methods used to collect the measurements. Application 
behaviour might be described by the time to execute a 
particular program section or the number of events recorded 
in a particular time span. 

4 DESCRIBING TRACEFILE CONTENT 

To maintain the system, application, and execution 
information describing the tracefile repository, a database of 
descriptive metadata is implemented. These metadata exist 
at multiple levels; they include descriptions of individual 
tracefiles, sets of tracefiles, and segments of tracefiles. The 
use of off-the-shelf relational database management 
(rDBMS) software allows us to maintain and search these 
metadata with a great deal of power, flexibility, and 
robustness, and with a minimum of investment in software 
development. 

As discussed previously, the choice of which metadata to 
maintain – the data model – was based on the assessment of 
user needs in searching the tracefile collection. The 
Tracefile Testbed provides the ability to search on machine, 
application, or execution parameters. The versatility of the 
database allows us to search, based on flexible combinations 
of these parameters, but careful database design was 
required to make full use of the power of the rDBMS. 
Figure 2 presents a conceptual view of the database schema 
supporting user searches. 

 

Figure 2   General structure of tracefile metadata 

Note that tracefiles do not typically stand alone; they are 
usually generated as sets of related files pertaining to a 
larger project or experiment. The metadata database allows 
us to maintain this information about the origin of tracefiles. 
The sets of tracefiles provide a convenient grouping 
mechanism, and allow users to view information on all 
tracefiles generated during a physical experiment, or suite of 
related executions. In other cases, a number of tracefiles that 
were not generated together may still form a naturally 
cohesive set (e.g., they may demonstrate a common 

computational approach, or illustrate the effects of varying a 
particular parameter). Since cohesion of such sets would not 
always be apparent from the metadata described above, the 
system allows specification of virtual experiments – groups 
of tracefiles, which, though not related in origin, have an  
ex post facto relationship that is useful to a researcher. This 
structure allows tracefiles to belong to multiple sets that cut 
across each other, allowing individual users to superimpose 
organisational schemes that fit their particular needs. 

A key requirement for the Tracefile Testbed is that it be 
easy for members of the HPC community to add new 
tracefiles to the repository. We were fortunate in having 
access to a sizeable collection of tracefiles from a variety of 
machine and problem types to use as the initial population 
of the repository. We have gathered about 100 files over the 
last few years in our benchmarking work with the SPEC 
suite (Eigenmann and Hassanzadeh, 1996). Given the 
number of files we anticipate gathering from the APART 
(Automated Performance Analysis: Resources and Tools) 
working group and other members of the HPC community, 
it was important to be able to parse the files in batch mode, 
and our initial parser reflects this bias. A web-based tool for 
uploading tracefiles has also been implemented. 

To ensure that metadata are available for all tracefiles in 
the testbed, they must be supplied as part of the uploading 
mechanism. As discussed previously, information such as 
system- and application-level metadata does not exist  
a priori in the tracefiles, but must be provided by the 
programmer or bench marker. The originator of the 
tracefiles is also the source of descriptive information about 
user-defined events in the execution-level metadata. To 
facilitate the input of that information, a tracefile metadata 
format and a corresponding parser have been developed. 
Most of the metadata elements are likely to be applicable to 
a whole series of tracefiles, so the format and uploading 
tools were designed to facilitate metadata reuse and to ease 
the task of uploading multiple tracefiles. 

5 IDENTIFYING TRACEFILE EVENTS AND SEGMENTS 

Although tracefiles are typically quite large, the portion of a 
tracefile that is of interest for a particular purpose  
may be only a small fragment of the file. For instance, a 
researcher wishing to compare the performance of FFT 
implementations may want to work with a fragment that 
brackets the routine(s) in which the FFT is implemented. 
Similarly, a tool developer may be interested in testing tool 
functionality in the presence of broadcast operations; the 
remainder of the trace may be largely irrelevant. If the 
source code is appropriately instrumented at the time of 
tracefile creation, the sections of interest will be easily 
identifiable, but locating them in a large corpus of tracefile 
data may still be an onerous task. In order to simplify 
identification of tracefile fragments that are of interest, it is 
convenient to maintain a description of the internal structure 
of tracefiles. Some of this structure may be automatically 
generated from information in the tracefile, but the 
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remainder must be supplied as metadata, typically by the 
programmer who contributes the file to the repository. 

Because a tracefile is essentially a list of time-stamped 
events (with some descriptive header information), it is easy 
to identify a subset of a tracefile corresponding to the events 
occurring during a particular time interval. The obvious 
choice for defining such a time interval is the begin and end 
timestamp of a user-defined event (such as the FFT routine 
mentioned above). User-defined events are discussed 
because system-defined events in MPI are atomic; that is, 
they do not have start and end markers. However, such a 
view may be an oversimplification that does not capture the 
behaviour of interest during the time interval. Because the 
tracefile is a straightforward list of per-processor events,  
it is considerably more difficult to define events that  
pertain to the entire parallel machine. The idealised view of 
a data-parallel application would have all processors 
participating in all events (i.e., executing the same segment 
of code) approximately simultaneously; however, there is no 
guarantee in an actual application that any event will 
include all processors, simultaneously or not. 

Consequently, a user who wishes to extract a subset of a 
tracefile to capture system performance during a particular 
event is faced with a difficulty. Although the user may 
know that particular events on one processor correspond to 
events on other processors, it is not clear from the tracefile 
how these correspondences can be automatically inferred. 
We have used a heuristic approach to identify machine-wide 
events. A machine-wide event includes all the same-type 
per-processor events, whose starting markers in the tracefile 
are separated by fewer than K*N events, where N is the 
number of processors in the machine, and K is a definable 
constant (currently set to 4). The per-processor events that 
comprise a machine-wide event may, or may not, overlap in 
time, but in discussions with users of parallel performance 
evaluation systems it is found that the users expect this 
criterion to effectively capture the corresponding events. 

The machine-wide event (defined as a starting timestamp 
and, for user-defined events, an ending timestamp in a 
particular tracefile) is the basic unit of tracefile data that our 
system maintains. We allow users to attach descriptions, 
keywords, and source code references to these events. 
Furthermore, it is possible to search, browse, and download 
just the portions of a tracefile that are of interest to a 
particular user. A tracefile segment is defined as the portion 
of the tracefile between where a machine-wide event begins 
and ends. A given tracefile may have thousands of 
segments; they can be accessed individually or in groups 
sharing some characteristic (e.g., all segments 
corresponding to global summation operations). 

6 FORMING TRACEFILE SEGMENTS 

The principal reason many HPC users create and  
maintain tracefiles is to be able to use them as input to 
performance-analysis software. To support this requirement, 

the Tracefile Testbed provides single-keystroke operations 
for downloading tracefiles to the user’s local machine via  
http or ftp. 

The issue of tracefile segments introduces problems with 
respect to tool compatibility. Trace-based performance tools 
require conformant tracefiles as input; although there is no 
single standard for tracefile format, we assume that a 
tracefile that is usable by popular performance analysis 
packages will also be suitable for HPC users who write their 
own analysis tools. A fragment naively extracted from a 
tracefile will not, in general, be of a legal format. In 
particular, it will lack header information and will probably 
contain unmatched markers of entry to and exit from 
instrumented program regions. To make segments useful, 
the Tracefile Testbed modifies the fragment, in order to 
generate a legal tracefile that describes, as closely as 
possible, the behaviour of the application in the region that 
the user has selected. 

7 PERFORMANCE SUMMARIES 

In many cases, the information that a user wants from a 
tracefile or set of tracefiles may be easily summarised 
without recourse to other performance analysis software. 
This is particularly the case when an application 
programmer wishes to compare some measure of overall 
performance across several different tracefiles. To simplify 
such tasks, the Tracefile Testbed provides some simple 
performance summary functions that may be performed on 
selected sets of tracefiles or tracefile segments. Available 
summary functions are summarised below. 

• mean and standard deviation of segment length  
(in elapsed time, in a particular set of tracefile 
segments) 

• identification and length of the shortest and longest 
segments (in a particular set of tracefile segments) 

• number of identifiable segments in a tracefile 
• elapsed time of a tracefile 
• per-processor mean and standard deviation of the 

elapsed time of a particular type of event (e.g., I/O 
operation, cache miss). 

Processor utilisation during a parallel event (e.g., how much 
processor time is spent waiting during a barrier 
synchronisation) should also be taken into account. 

8 THE USER INTERFACE 

The user interface to the Tracefile Testbed was implemented 
using web technology to emphasise portability and 
convenience. Two interfaces were created: one for searching 
the testbed and downloading performance data, the other for 
uploading tracefiles and corresponding metadata. Perhaps 
the most important concern in the design of the interfaces 
was scalability to the potential size of the testbed. This 
study’s goal was to enable users to search and locate 
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performance data in the most efficient manner possible and 
seamlessly download the appropriate files or segments. 

The search and upload interfaces permit users to move 
freely among querying, downloading, uploading, and  
help activities. Definitions for all operations are available in 
pop-up windows activated when the mouse is positioned 
over instances of the term in the interface. Although the 
relational nature of the testbed would allow users  
to query and view the values of all data fields,  
previous experiences in usability of database interfaces 
(Newsome et al., 1999) indicated that presenting the user 
with so many choices at once would be confusing. Instead, a 
drill-down approach was applied, where users are presented 
with a subset of the selectable fields at each step, allowing 
the development of a comprehensive, yet concise and 
intuitive, user interface. 

Throughout the interface, users have the option of 
returning to previous stages in their search by using the 
Return buttons. The advantage of providing these, rather  
than simply using the Back button provided by the web 
browser, is that we can provide a descriptive label for the 
button (e.g., Return to Tracefile Listing) so that users can 
know exactly as to which step in the search sequence they 
will be moved. 

The search interface was developed using QML  
(Query Markup Language, http://www.nacse.org/qml), a 
web-to-database middleware package developed and 
distributed by NACSE. QML facilitates the dynamic 
generation of selectable lists by pre-fetching values from the 
testbed, meaning that the interface does not require updating 
to accommodate additions to the database. The initial query 
screen is displayed in Figure 3. 

 
Figure 3   Query interface-starting page 

 

The selection criteria available on the initial query interface 
page are those identified by representative users as the most 
useful in terms of facilitating discrimination among 
tracefiles in the testbed. Criteria are displayed in three 
logical groupings to improve legibility and selection 
efficiency. Tracefile-related choices include tracefile format 
and event types. Selectable machine environment variables 
are machine type, number of processors, memory per 
processor, processor speed, and cache size. The query 
choices relating to the application are experiment name 
(both physical and virtual experiments are displayed), 
source code language, and algorithm. The user can make 
multiple selections from any of the lists, in which case the 
union (logical OR) of the matching records will be returned. 
After making arbitrary selections, the user can choose to 
narrow the search by eliminating choices that are 
unavailable due to constraints imposed by other selections. 
This drill-down operation repopulates the lists with data 
reflecting the selected constraints. The procedure can be 
repeated as many times as the user chooses before the actual 
search is activated. 

In subsequent screens, the user can browse the search 
results. Tracefiles are grouped into tracefile classes based 
on the unique combinations of language, source size, 
machine type, algorithm, compiler, and number of 
processors found. This helps users restrict the number of 
results before they view individual tracefiles, since queries 
may easily return hundreds of tracefiles (Figure 4). 

When one or more tracefiles have been selected, the user 
may download them for use with a performance analysis 
tool. To allow users to view summary information without 
special tools, and to allow users to download tracefiles 
exhibiting particular performance characteristics, three types 
of performance summaries can be generated. One compares 
performance across tracefile classes, while the other two 
present timing information on individual events and 
segments, within the selected tracefile(s). The performance 
summary screen for tracefile classes is shown in Figure 5. 
From this point, the user can choose to download one or 
more entire classes or view more information on tracefiles 
within the class(es). 

 
Figure 4   Search results, grouped by class 
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Figure 5   Performance summary, by tracefile class 

Performance tool developers will want to use the tracefiles 
for testing their own tool functionalities; they may also be 
interested in graphical or more detailed performance 
summary information than that offered by the testbed. The 
Tracefile Testbed provides facilities for downloading 
tracefiles or relevant segments of tracefiles. Downloading 
entire tracefiles is accomplished through the ‘Individual 
Tracefiles’ portion of the interface, which provides a link to 
the tracefile in the testbed’s ftp server. Additionally, users 
may download selected tracefile segments. To download 
selected segments, users mark the appropriate segments in 
the Segment Performance screen and select ‘Download 
Segments’. This prompts a cgi program to parse the tracefile 
and create a new file containing only the original file’s 
header information and the desired segments. 

An upload interface was designed with the goal of 
encouraging users to supply adequate amounts of quality 
metadata, without being discouraged by the level of effort 
required. This was a challenge, given the number of 
metadata elements required for the testbed. While creating a 
virtual experiment is easy, since most metadata are already 
available in the database, the uploading of new tracefiles 
requires a significant amount of new metadata to be entered. 
While addressing this problem, we chose to put the form on 
as few pages as possible, rather than breaking it into smaller 
components over multiple pages. Thus, it is immediately 
clear how much information is required. In addition, it is 
endeavoured to minimise the amount of typing required by 
allowing users to copy and modify the metadata from an 
existing tracefile. 

9 SUMMARY 

Responding directly to a requirement that has been 
expressed in a variety of community forums, the Tracefile 
Testbed provides HPC programmers and tool developers 
with web access to a repository of tracefiles. A database of 
metadata describing the systems, applications, and 
execution-level information of each tracefile supports a 
variety of search approaches. Performance summaries assist 

users to assess the relevance of files and segments before 
they are examined in detail. Individual files and/or segments 
may be downloaded to the user’s local system for further 
analysis and comparison. Application programmers should 
find this community repository useful both in predicting the 
behaviour of existing programs and in the development and 
optimisation of new applications. Developers of 
performance analysis and prediction tools will find the 
Tracefile Testbed to be a convenient source of tracefiles for 
testing the functionality and display capabilities of their 
tool. 
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