
Int. J. High Performance Computing and Networking, Vol. 3, Nos. 2/3, 2005 95

Copyright © 2005 Inderscience Enterprises Ltd.

The Tracefile Testbed:
a community repository
for identifying and retrieving
HPC performance data

Ken Ferschweiler*
Northwest Alliance for Computational Science and Engineering,
218 CH2M Hill Alumni Center, Oregon State University,
Corvallis, 97331 OR, USA
Fax: 541 737 6609 E-mail: kennino@nacse.org
*Corresponding author

Scott Harrah
Weatherhead School of Management,
Case Western Reserve University,
10900 Euclid Avenue Cleveland, 44106 OH, USA
E-mail: scott_harrah@yahoo.com

Dylan Keon
Northwest Alliance for Computational Science and Engineering,
218 CH2M Hill Alumni Center, Oregon State University,
Corvallis, 97331 OR, USA
E-mail: keon@nacse.org

Mariacarla Calzarossa
Dipartimento di Informatica e Sistemistica,
Università di Pavia, via Ferrata, 1 I-27100 Pavia, Italy
Fax: +39 0382 985373 E-mail: mcc@unipv.it

Daniele Tessera
Dipartimento di Matematica e Fisica,
Università Cattolica del Sacro Cuore,
via Musei, 41 I-25121 Brescia, Italy
Fax: +39 030 2406 742 E-mail: d.tessera@dmf.unicatt.it

Cherri Pancake
School of Electrical Engineering and Computer Science,
102 Dearborn Hall, Oregon State University,
Corvallis, 97331 OR, USA
E-mail: pancake@eecs.orst.edu

Abstract: HPC programmers utilise tracefiles, which record program behaviour in great
detail, as the basis for many performance analysis activities. The lack of generally
accessible tracefiles has forced programmers to develop their own testbeds in order to study
the basic performance characteristics of the platforms they use. Because tracefiles serve as
input to performance analysis and performance prediction tools, tool developers have also
been hindered by the lack of a testbed for verifying and fine-tuning tool functionality.
A community repository that meets the needs of both application and tool developers has
been created in this study. In this paper, we describe how the Tracefile Testbed was
designed to facilitate flexible searching and retrieval of tracefiles based on a variety of
characteristics has been described. Its web-based interface provides a convenient

96 K. FERSCHWEILER, S. HARRAH, D. KEON, M. CALZAROSSA, D. TESSERA AND C. PANCAKE

mechanism for browsing, downloading, and uploading collections of tracefiles and tracefile
segments, as well as viewing statistical summaries of performance characteristics.

Keywords: computer science; data communication; database management systems;
high performance computing; performance tuning; performance monitoring; tracefiles.

Reference to this paper should be made as follows: Ferschweiler, K., Harrah, S., Keon, D.,
Calzarossa, M., Tessera, D. and Pancake, C. (2005) ‘The Tracefile Testbed: a community
repository for identifying and retrieving HPC performance data’, Int. J. High Performance
Computing and Networking, Vol. 3, Nos. 2/3, pp.95–102.

Biographical notes: Ken Ferschweiler is Technical Coordinator of the Northwest Alliance
for Computational Science and Engineering at Oregon State University. He received his
BS (Engineering) Degree from the University of Portland, Oregon in 1978. His research
interests are in the area of providing scientists and engineers with creative and flexible
ways of accessing computing facilities and exploring complex data.

Scott Harrah participated in this project while a graduate student at Oregon State
University. After graduating with an MS in Computer Science in 2001, he was employed
by Case Western Reserve University.

Dylan Keon is GIS Coordinator at the Northwest Alliance for Computational Science and
Engineering at Oregon State University. He received an MS in Ecology and GIS/Statistics
from Oregon State University in 2001. His research interests include the use of open source
tools to develop web-based mapping interfaces that dynamically integrate spatial content
from multiple sources, including relational databases.

Mariacarla Calzarossa is Professor of Computer Science at the Engineering School of the
University of Pavia, Italy. She received a Laurea degree in Mathematics from the
University of Pavia. She has been Visiting Scientist at the University of California at
Berkeley and at Duke University. Her research interests center on performance evaluation
of complex systems and applications, specifically addressing performance analysis and
debugging of parallel applications and workload characterisation of mail servers and Web
systems. She is a senior member of the IEEE and a member of the IFIP WG 7.3.

Daniele Tessera participated in this project while a post-doc at the Università di Pavia.
Currently he is a Researcher at the Dipartimento di Matematica e Fisica, Università
Cattolica at Brescia. His research interests include performance analysis and debugging,
and workload characterisation of complex systems, such as parallel and distributed
machines and internet distributed applications.

Cherri M. Pancake is Professor of Electrical Engineering and Computer Science at
Oregon State University and Director of the Northwest Alliance for Computational Science
& Engineering. She received a PhD in Computer Engineering from Auburn University.
Her research interests center on usability engineering, specifically studying how complex
software and data systems can be made more useful and effective for practicing scientists
and engineers. She is a Fellow of the ACM and the IEEE.

1 BACKGROUND AND MOTIVATION

A high-performance computing (HPC) application is
characterised by many variables that control its execution
and determine its performance. Variables, such as algorithm
type, problem size, input parameters, programming
languages and paradigms, libraries, hardware architecture,
etc., can have very significant effects on program behaviour.
It is important to understand the role played by each
variable and the ways they combine to influence the
performance achieved, or achievable, by the application.

Two approaches are commonly used for the purpose of
understanding these effects: performance profiling and
performance prediction. Profiling (Reed et al., 1998; Shande
et al., 1999) captures the behaviour of an application by

monitoring its execution. Monitoring can be based on
hardware counter sampling or it can require the
instrumentation of the application’s source code or its
binary executable. The data produced by monitoring may be
analysed on–the–fly or stored as tracefiles for post-mortem
analysis. Many of the tools currently available for HPC
performance analysis are based on tracefiles. Selected
examples are described below.
• Jumpshot (Zaki et al., 1999) analyses tracefiles and

provides multiple time-space diagrams of program
behaviour.

• Continuous Monitoring (Perl et al., 1998) captures logs
of appropriately instrumented applications, while they
are being executed with the objective of automating the
testing of performance properties of complex systems.

THE TRACEFILE TESTBED: A COMMUNITY REPOSITORY FOR IDENTIFYING AND RETRIEVING HPC PERFORMANCE DATA 97

• Paradyn (Miller et al., 1995) employs historical
performance data, gathered in previous executions of an
application, to improve the effectiveness of automated
performance diagnosis. The Performance Consultant
component, within Paradyn, extracts knowledge from
the performance data collected over the life of an
application (Karavanic and Miller, 1999).

Performance prediction (Fahringer and Pozgaj, 2000) takes
a different approach. These techniques attempt to provide
estimates of the performance achievable by an application
by analysing its structure and the influences of compiler
transformations and the system architecture using symbolic
analysis, simulation, or other model-based methods.
Prediction tools often rely directly or indirectly on tracefiles.
The data from tracefiles can serve as the basis for constructing
or validating the performance model, or the data can be used
directly by the tool to adjust the model to the characteristics
of a particular application (e.g., Yan et al., 1995).

Tracefiles are typically generated by the application
programmer as part of the performance tuning process.
These field studies of HPC programmers indicate that many
programmers also create suites of simple pseudo-benchmark
codes and generate tracefiles to help establish basic
performance characteristics when they move to new HPC
platforms. The intention in both cases is to help the user to
understand and tune their applications better.

The developers of trace-based tools also generate suites of
tracefiles. In this case, the objective is to assist in the
process of testing and fine-tuning tool functionality.
According to the subjects interviewed here, tool developers
do not often have access to real applications for these
activities; rather, they construct artificial codes designed to
generate tracefiles that will stress the tool’s boundary
conditions or generate demonstration visualisations.

Tracefiles are a valuable source of information about the
properties and behaviour both of applications and of the
systems on which they are executed. Tool users and
developers have indicated alike in several public forums
(e.g., Parallel Tools Consortium meetings, Birds of a
Feather (BOF) sessions at the SC conference, community
workshops on parallel debugging and performance tuning
tools) that it would be useful to construct a generally
accessible testbed for tracefile data. This would make it
possible for users to see if tracefiles from related applications
can be of use in the design and tuning of their own application.
It would also provide a more realistic foundation for testing
new performance tools. Furthermore, because tracefiles are
typically large and unwieldy to store (the recording of key
program events during one application run can generate
gigabytes of data), a centralised repository could encourage
programmers to archive their tracefiles, rather than deleting
them when they are no longer of immediate use.

2 THE TRACEFILE TESTBED

With support from the Department of Defense (DOD) HPC
Modernization Program, the creation of a community

repository called the Tracefile Testbed was undertaken. The
objective was to develop a database that not only supports
convenient and flexible searching of tracefile data generated
on HPC systems, but also to allow others to benefit from
performance data that was collected by a programmer or
tool developer for their own purposes.

The Tracefile Testbed was implemented as a joint project
of NACSE and the Università di Pavia. It was structured
according to a data model that describes both the static and
dynamic behaviour of parallel applications, as captured in
tracefiles. The tracefiles are maintained as separate file
units. The source code that generated the tracefiles is also
available (unless that code is proprietary). Metadata
encapsulating the performance behaviour and run-time
environment characteristics associated with the tracefiles are
maintained in a relational database using Oracle9i.

File size is a key consideration when storing tracefiles.
Although our organisation has committed itself to
maintaining the repository as a contribution to the HPC
community, size was also considered from the perspective
of the users, who will find that storing many downloaded
copies is quite resource-intensive. We accommodated this
usability consideration in the following way. Within the
Tracefile Testbed, all file locations are maintained in the
metadata database as URLs. This allows users – if they
choose – to maintain their own subsets of tracefiles by
simply storing links or shortcuts to the files, rather than the
files themselves. A secondary advantage of this approach is
that it allows us to distribute the repository itself. That is,
the actual tracefiles may be located on multiple servers that
can be different from the server(s) hosting the tool interface
and the metadata database. The initial implementation
involves three servers: a web server maintaining the
interface, a relational database server hosting the metadata,
and the tracefiles that are stored on a separate file server.
The general architecture of the Tracefile Testbed browser is
illustrated in Figure 1.

Figure 1 Architecture of the Tracefile Testbed

98 K. FERSCHWEILER, S. HARRAH, D. KEON, M. CALZAROSSA, D. TESSERA AND C. PANCAKE

A web-based interface allows users to navigate through the
repository, select tracefiles and segments from one or more
applications, browse their characteristics, and download the
data. Performance data can be identified and extracted,
based on various selection criteria, such as “all data related
to a given application”, “data related to a class of
applications”, “data from programs executed on a particular
system architecture”, “data from runs that performed global
broadcast operations”, etc. The Tracefile Testbed provides
performance summaries of selected trace data; alternatively,
the tracefile data may be downloaded for analysis using
available tools, in order to derive detailed performance
figures.

There are several significant challenges to be addressed in
creating a repository of this nature.
• How can we represent the characteristics of a parallel

application and its associated tracefile(s) in such a way
that testbed users can easily find and select appropriate
performance data?

• How much metadata can be gleaned from the tracefiles
themselves, rather than being supplied by the user
submitting the files?

• How can tracefiles be subdivided into smaller segments
to minimise the amount of data that must be
downloaded for a particular purpose? What is the
proper abstraction for those segments, given that we
cannot guarantee that events on different processors
occurred near-simultaneously (or even that they
occurred at all)?

• How can we ensure that download operations always
yield useful data? How can we reduce the need to
download tracefiles? Can we allow users to maintain
shortcuts to the appropriate files, without having to
copy the files themselves?

• How can tracefile segments be structured, so that they
can serve as input to trace-based tools when the user
has not downloaded the complete file?

• Can the repository reduce the need for programmers to
write simple analysis routines? Is there a way to
provide a snapshot view that compares the performance
recorded in multiple tracefiles?

• How can the effort required to enter metadata be
minimised in order to encourage fully annotated
submissions?

• What mechanisms for searching, selecting, and
browsing tracefile data are powerful and flexible
enough to help programmers understand application
behaviour?

• Are the same mechanisms appropriate for use by tool
developers? If not, what type of specialised support is
required?

• To what extent can the user interface guide the user
through the repository, so that totally unfamiliar users
can quickly arrive at the most useful information?

Clearly, many of the issues are related to the usability of the
repository, rather than structural aspects of the database

itself. The sections below discuss how each issue was
addressed in developing the Tracefile Testbed.

3 DATA MODEL

In order to categorise and maintain tracefile data, we require
a data model with the power to describe the characteristics
of parallel applications and the performance measurements
collected during their execution. In large part, the
framework chosen to describe tracefiles was derived from
user needs in searching the tracefile collection. Based on
previous usability studies, it was determined that users wish
to select entire tracefiles (or segments thereof) on the basis
of machine architecture types and parameters, information
related to the tracefile itself, and information related to the
tracefile segments. Users should also be able to perform
searches based on arbitrary keywords reflecting system
platforms, problem types, and user-defined events.

The model must capture not just parallel machine
characteristics, but also the design strategies and
implementation details of the application. For this purpose,
the information describing a parallel application has been
grouped into three layers. The system layer provides a
coarse-grained description of the parallel machine on which
the application is executed. The other two layers comprise
information derived from the application itself; the
application layer describes its static characteristics, whereas
the execution layer deals with the dynamic characteristics
directly related to measurements collected at run time. Most
of the information comprising the system and application
layers is not available in the tracefile, but must be supplied
by the application programmer in the form of metadata.
Execution layer information can be harvested directly from
the tracefiles.

The system layer description includes machine
architecture (e.g., shared memory, virtual shared memory,
distributed memory, cluster of SMPs), number of
processors, clock frequency, amount of physical memory,
cache size, communication subsystem, I/O subsystem,
communication and numeric libraries, and parallelisation
tools.

The static characteristics of the application layer range
from the disciplinary domain (e.g., computational fluid
dynamics, weather forecasting, simulation of physical and
chemical phenomena) to the algorithms (e.g., partial
differential equation solvers, spectral methods, Monte Carlo
simulations) and programming languages employed. They
also include information about the application program
interface (e.g., MPI, OpenMP, PVM) and links to the source
code. Problem size, number of allocated processors, and
work and data distributions are further examples of static
characteristics.

The execution layer provides a description of the
behaviour of a parallel application in terms of measurements
generated at run time. These measurements are typically

THE TRACEFILE TESTBED: A COMMUNITY REPOSITORY FOR IDENTIFYING AND RETRIEVING HPC PERFORMANCE DATA 99

time-stamped descriptions that correspond to specific events
(I/O operation, cache miss, page fault, etc.) or to
instrumentation of the source code (e.g., beginning or end of
an arbitrary section of code, such as a subroutine or loop).
The type and number of measurements associated with each
event depend on the event type and on the monitoring
methods used to collect the measurements. Application
behaviour might be described by the time to execute a
particular program section or the number of events recorded
in a particular time span.

4 DESCRIBING TRACEFILE CONTENT

To maintain the system, application, and execution
information describing the tracefile repository, a database of
descriptive metadata is implemented. These metadata exist
at multiple levels; they include descriptions of individual
tracefiles, sets of tracefiles, and segments of tracefiles. The
use of off-the-shelf relational database management
(rDBMS) software allows us to maintain and search these
metadata with a great deal of power, flexibility, and
robustness, and with a minimum of investment in software
development.

As discussed previously, the choice of which metadata to
maintain – the data model – was based on the assessment of
user needs in searching the tracefile collection. The
Tracefile Testbed provides the ability to search on machine,
application, or execution parameters. The versatility of the
database allows us to search, based on flexible combinations
of these parameters, but careful database design was
required to make full use of the power of the rDBMS.
Figure 2 presents a conceptual view of the database schema
supporting user searches.

Figure 2 General structure of tracefile metadata

Note that tracefiles do not typically stand alone; they are
usually generated as sets of related files pertaining to a
larger project or experiment. The metadata database allows
us to maintain this information about the origin of tracefiles.
The sets of tracefiles provide a convenient grouping
mechanism, and allow users to view information on all
tracefiles generated during a physical experiment, or suite of
related executions. In other cases, a number of tracefiles that
were not generated together may still form a naturally
cohesive set (e.g., they may demonstrate a common

computational approach, or illustrate the effects of varying a
particular parameter). Since cohesion of such sets would not
always be apparent from the metadata described above, the
system allows specification of virtual experiments – groups
of tracefiles, which, though not related in origin, have an
ex post facto relationship that is useful to a researcher. This
structure allows tracefiles to belong to multiple sets that cut
across each other, allowing individual users to superimpose
organisational schemes that fit their particular needs.

A key requirement for the Tracefile Testbed is that it be
easy for members of the HPC community to add new
tracefiles to the repository. We were fortunate in having
access to a sizeable collection of tracefiles from a variety of
machine and problem types to use as the initial population
of the repository. We have gathered about 100 files over the
last few years in our benchmarking work with the SPEC
suite (Eigenmann and Hassanzadeh, 1996). Given the
number of files we anticipate gathering from the APART
(Automated Performance Analysis: Resources and Tools)
working group and other members of the HPC community,
it was important to be able to parse the files in batch mode,
and our initial parser reflects this bias. A web-based tool for
uploading tracefiles has also been implemented.

To ensure that metadata are available for all tracefiles in
the testbed, they must be supplied as part of the uploading
mechanism. As discussed previously, information such as
system- and application-level metadata does not exist
a priori in the tracefiles, but must be provided by the
programmer or bench marker. The originator of the
tracefiles is also the source of descriptive information about
user-defined events in the execution-level metadata. To
facilitate the input of that information, a tracefile metadata
format and a corresponding parser have been developed.
Most of the metadata elements are likely to be applicable to
a whole series of tracefiles, so the format and uploading
tools were designed to facilitate metadata reuse and to ease
the task of uploading multiple tracefiles.

5 IDENTIFYING TRACEFILE EVENTS AND SEGMENTS

Although tracefiles are typically quite large, the portion of a
tracefile that is of interest for a particular purpose
may be only a small fragment of the file. For instance, a
researcher wishing to compare the performance of FFT
implementations may want to work with a fragment that
brackets the routine(s) in which the FFT is implemented.
Similarly, a tool developer may be interested in testing tool
functionality in the presence of broadcast operations; the
remainder of the trace may be largely irrelevant. If the
source code is appropriately instrumented at the time of
tracefile creation, the sections of interest will be easily
identifiable, but locating them in a large corpus of tracefile
data may still be an onerous task. In order to simplify
identification of tracefile fragments that are of interest, it is
convenient to maintain a description of the internal structure
of tracefiles. Some of this structure may be automatically
generated from information in the tracefile, but the

100 K. FERSCHWEILER, S. HARRAH, D. KEON, M. CALZAROSSA, D. TESSERA AND C. PANCAKE

remainder must be supplied as metadata, typically by the
programmer who contributes the file to the repository.

Because a tracefile is essentially a list of time-stamped
events (with some descriptive header information), it is easy
to identify a subset of a tracefile corresponding to the events
occurring during a particular time interval. The obvious
choice for defining such a time interval is the begin and end
timestamp of a user-defined event (such as the FFT routine
mentioned above). User-defined events are discussed
because system-defined events in MPI are atomic; that is,
they do not have start and end markers. However, such a
view may be an oversimplification that does not capture the
behaviour of interest during the time interval. Because the
tracefile is a straightforward list of per-processor events,
it is considerably more difficult to define events that
pertain to the entire parallel machine. The idealised view of
a data-parallel application would have all processors
participating in all events (i.e., executing the same segment
of code) approximately simultaneously; however, there is no
guarantee in an actual application that any event will
include all processors, simultaneously or not.

Consequently, a user who wishes to extract a subset of a
tracefile to capture system performance during a particular
event is faced with a difficulty. Although the user may
know that particular events on one processor correspond to
events on other processors, it is not clear from the tracefile
how these correspondences can be automatically inferred.
We have used a heuristic approach to identify machine-wide
events. A machine-wide event includes all the same-type
per-processor events, whose starting markers in the tracefile
are separated by fewer than K*N events, where N is the
number of processors in the machine, and K is a definable
constant (currently set to 4). The per-processor events that
comprise a machine-wide event may, or may not, overlap in
time, but in discussions with users of parallel performance
evaluation systems it is found that the users expect this
criterion to effectively capture the corresponding events.

The machine-wide event (defined as a starting timestamp
and, for user-defined events, an ending timestamp in a
particular tracefile) is the basic unit of tracefile data that our
system maintains. We allow users to attach descriptions,
keywords, and source code references to these events.
Furthermore, it is possible to search, browse, and download
just the portions of a tracefile that are of interest to a
particular user. A tracefile segment is defined as the portion
of the tracefile between where a machine-wide event begins
and ends. A given tracefile may have thousands of
segments; they can be accessed individually or in groups
sharing some characteristic (e.g., all segments
corresponding to global summation operations).

6 FORMING TRACEFILE SEGMENTS

The principal reason many HPC users create and
maintain tracefiles is to be able to use them as input to
performance-analysis software. To support this requirement,

the Tracefile Testbed provides single-keystroke operations
for downloading tracefiles to the user’s local machine via
http or ftp.

The issue of tracefile segments introduces problems with
respect to tool compatibility. Trace-based performance tools
require conformant tracefiles as input; although there is no
single standard for tracefile format, we assume that a
tracefile that is usable by popular performance analysis
packages will also be suitable for HPC users who write their
own analysis tools. A fragment naively extracted from a
tracefile will not, in general, be of a legal format. In
particular, it will lack header information and will probably
contain unmatched markers of entry to and exit from
instrumented program regions. To make segments useful,
the Tracefile Testbed modifies the fragment, in order to
generate a legal tracefile that describes, as closely as
possible, the behaviour of the application in the region that
the user has selected.

7 PERFORMANCE SUMMARIES

In many cases, the information that a user wants from a
tracefile or set of tracefiles may be easily summarised
without recourse to other performance analysis software.
This is particularly the case when an application
programmer wishes to compare some measure of overall
performance across several different tracefiles. To simplify
such tasks, the Tracefile Testbed provides some simple
performance summary functions that may be performed on
selected sets of tracefiles or tracefile segments. Available
summary functions are summarised below.

• mean and standard deviation of segment length
(in elapsed time, in a particular set of tracefile
segments)

• identification and length of the shortest and longest
segments (in a particular set of tracefile segments)

• number of identifiable segments in a tracefile
• elapsed time of a tracefile
• per-processor mean and standard deviation of the

elapsed time of a particular type of event (e.g., I/O
operation, cache miss).

Processor utilisation during a parallel event (e.g., how much
processor time is spent waiting during a barrier
synchronisation) should also be taken into account.

8 THE USER INTERFACE

The user interface to the Tracefile Testbed was implemented
using web technology to emphasise portability and
convenience. Two interfaces were created: one for searching
the testbed and downloading performance data, the other for
uploading tracefiles and corresponding metadata. Perhaps
the most important concern in the design of the interfaces
was scalability to the potential size of the testbed. This
study’s goal was to enable users to search and locate

THE TRACEFILE TESTBED: A COMMUNITY REPOSITORY FOR IDENTIFYING AND RETRIEVING HPC PERFORMANCE DATA 101

performance data in the most efficient manner possible and
seamlessly download the appropriate files or segments.

The search and upload interfaces permit users to move
freely among querying, downloading, uploading, and
help activities. Definitions for all operations are available in
pop-up windows activated when the mouse is positioned
over instances of the term in the interface. Although the
relational nature of the testbed would allow users
to query and view the values of all data fields,
previous experiences in usability of database interfaces
(Newsome et al., 1999) indicated that presenting the user
with so many choices at once would be confusing. Instead, a
drill-down approach was applied, where users are presented
with a subset of the selectable fields at each step, allowing
the development of a comprehensive, yet concise and
intuitive, user interface.

Throughout the interface, users have the option of
returning to previous stages in their search by using the
Return buttons. The advantage of providing these, rather
than simply using the Back button provided by the web
browser, is that we can provide a descriptive label for the
button (e.g., Return to Tracefile Listing) so that users can
know exactly as to which step in the search sequence they
will be moved.

The search interface was developed using QML
(Query Markup Language, http://www.nacse.org/qml), a
web-to-database middleware package developed and
distributed by NACSE. QML facilitates the dynamic
generation of selectable lists by pre-fetching values from the
testbed, meaning that the interface does not require updating
to accommodate additions to the database. The initial query
screen is displayed in Figure 3.

Figure 3 Query interface-starting page

The selection criteria available on the initial query interface
page are those identified by representative users as the most
useful in terms of facilitating discrimination among
tracefiles in the testbed. Criteria are displayed in three
logical groupings to improve legibility and selection
efficiency. Tracefile-related choices include tracefile format
and event types. Selectable machine environment variables
are machine type, number of processors, memory per
processor, processor speed, and cache size. The query
choices relating to the application are experiment name
(both physical and virtual experiments are displayed),
source code language, and algorithm. The user can make
multiple selections from any of the lists, in which case the
union (logical OR) of the matching records will be returned.
After making arbitrary selections, the user can choose to
narrow the search by eliminating choices that are
unavailable due to constraints imposed by other selections.
This drill-down operation repopulates the lists with data
reflecting the selected constraints. The procedure can be
repeated as many times as the user chooses before the actual
search is activated.

In subsequent screens, the user can browse the search
results. Tracefiles are grouped into tracefile classes based
on the unique combinations of language, source size,
machine type, algorithm, compiler, and number of
processors found. This helps users restrict the number of
results before they view individual tracefiles, since queries
may easily return hundreds of tracefiles (Figure 4).

When one or more tracefiles have been selected, the user
may download them for use with a performance analysis
tool. To allow users to view summary information without
special tools, and to allow users to download tracefiles
exhibiting particular performance characteristics, three types
of performance summaries can be generated. One compares
performance across tracefile classes, while the other two
present timing information on individual events and
segments, within the selected tracefile(s). The performance
summary screen for tracefile classes is shown in Figure 5.
From this point, the user can choose to download one or
more entire classes or view more information on tracefiles
within the class(es).

Figure 4 Search results, grouped by class

102 K. FERSCHWEILER, S. HARRAH, D. KEON, M. CALZAROSSA, D. TESSERA AND C. PANCAKE

Figure 5 Performance summary, by tracefile class

Performance tool developers will want to use the tracefiles
for testing their own tool functionalities; they may also be
interested in graphical or more detailed performance
summary information than that offered by the testbed. The
Tracefile Testbed provides facilities for downloading
tracefiles or relevant segments of tracefiles. Downloading
entire tracefiles is accomplished through the ‘Individual
Tracefiles’ portion of the interface, which provides a link to
the tracefile in the testbed’s ftp server. Additionally, users
may download selected tracefile segments. To download
selected segments, users mark the appropriate segments in
the Segment Performance screen and select ‘Download
Segments’. This prompts a cgi program to parse the tracefile
and create a new file containing only the original file’s
header information and the desired segments.

An upload interface was designed with the goal of
encouraging users to supply adequate amounts of quality
metadata, without being discouraged by the level of effort
required. This was a challenge, given the number of
metadata elements required for the testbed. While creating a
virtual experiment is easy, since most metadata are already
available in the database, the uploading of new tracefiles
requires a significant amount of new metadata to be entered.
While addressing this problem, we chose to put the form on
as few pages as possible, rather than breaking it into smaller
components over multiple pages. Thus, it is immediately
clear how much information is required. In addition, it is
endeavoured to minimise the amount of typing required by
allowing users to copy and modify the metadata from an
existing tracefile.

9 SUMMARY

Responding directly to a requirement that has been
expressed in a variety of community forums, the Tracefile
Testbed provides HPC programmers and tool developers
with web access to a repository of tracefiles. A database of
metadata describing the systems, applications, and
execution-level information of each tracefile supports a
variety of search approaches. Performance summaries assist

users to assess the relevance of files and segments before
they are examined in detail. Individual files and/or segments
may be downloaded to the user’s local system for further
analysis and comparison. Application programmers should
find this community repository useful both in predicting the
behaviour of existing programs and in the development and
optimisation of new applications. Developers of
performance analysis and prediction tools will find the
Tracefile Testbed to be a convenient source of tracefiles for
testing the functionality and display capabilities of their
tool.

ACKNOWLEDGEMENT

This work was supported in part by the US Department of
Defense HPC Modernization Program (Contract Number
DAHC94-96-C-0008).

REFERENCES

Eigenmann, R. and Hassanzadeh, S. (1996) ‘Benchmarking with
real industrial applications: the SPEC high-performance
group’, IEEE Computational Science and Engineering, Spring
Issue.

Fahringer, T. and Pozgaj, A. (2000) ‘P3T+: a performance
estimator for distributed and parallel programs’, Journal of
Scientific Programming, Vol. 8, No. 2, pp.73–93.

Karavanic, K.L. and Miller, B.P. (1999) ‘Improving online
performance diagnosis by the use of historical performance
data’, Proc. SC’99, Portland, Oregon.

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K.,
Irvin, R.B., Karavanic, K.L., Kunchithapadam, K. and
Newhall, T. (1995) ‘The paradyn parallel measurement
performance tool’, IEEE Computer, Vol. 28, No. 11,
pp.37–46.

Newsome, M., Pancake, C.M. and Hanus, J. (1999) ‘Split
personalities’ for scientific databases: targeting database
middleware and interfaces to specific audiences’, Future
Generation Computing Systems, Vol. 6, pp.135–152.

Perl, S.E., Weihl, W.E. and Noble, B. (1998)
Continuous Monitoring and Performance Specification,
Technical Report 153, Digital Systems Research Center,
June.

Reed, D.A., Aydt, R.A., DeRose, L., Mendes, C.L.,
Ribler, R.L., Shaffer, E., Simitci, H., Vetter, J.S., Wells, D.R.,
Whitmore, S. and Zhang, Y. (1998) ‘Performance analysis
of parallel systems: approaches and open problems’,
Joint Symposium on Parallel Processing (JSPP), June,
pp.239–256.

Shende, S., Malony, A., Cuny, J., Lindlan, K., Beckman, P. and
Karmesin, S. (1999) ‘Portable profiling and tracing for parallel
scientific applications using C++’, Proc. SPDT’98: ACM
SIGMETRICS Symposium on Parallel and Distributed Tools,
pp.134–145.

Yan, J., Sarukhai, S. and Mehra, P. (1995) ‘Performance
measurement, visualization and modeling of parallel
and distributed programs using the AIMS toolkit’,
Software Practice and Experience, Vol. 25, No. 4,
pp.429–461.

Zaki, O., Lusk, E., Gropp, W. and Swider, D. (1999) ‘Toward
scalable performance visualization with jumpshot’,
The International Journal of High Performance Computing
Applications, Vol. 13, No. 2, pp.277–288.

